准备工作

  • Objective-C源码,我选的版本是objc4-818.2.tar.gz
  • 代码阅读工具,继续使用vim

源码阅读

1、在Xcode中通过汇编查看入口

实际上和weak指针相关的入口消息是:

objc_initWeak

2、进入oc实现

NSObject.mm文件中,看到objc_initWeak实现如下:

/** 
 * Initialize a fresh weak pointer to some object location. 
 * It would be used for code like: 
 *
 * (The nil case) 
 * __weak id weakPtr;
 * (The non-nil case) 
 * NSObject *o = ...;
 * __weak id weakPtr = o;
 * 
 * This function IS NOT thread-safe with respect to concurrent 
 * modifications to the weak variable. (Concurrent weak clear is safe.)
 *
 * @param location Address of __weak ptr. 
 * @param newObj Object ptr. 
 */
id
objc_initWeak(id *location, id newObj)
{
    if (!newObj) {
        *location = nil;
        return nil;
    }

    return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
        (location, (objc_object*)newObj);
}

根据注释,参数*location是weak指针的地址,而newObjc则是对象指针。
接下来看storeWeak函数实现:

// Update a weak variable.
// If HaveOld is true, the variable has an existing value 
//   that needs to be cleaned up. This value might be nil.
// If HaveNew is true, there is a new value that needs to be 
//   assigned into the variable. This value might be nil.
// If CrashIfDeallocating is true, the process is halted if newObj is 
//   deallocating or newObj's class does not support weak references. 
//   If CrashIfDeallocating is false, nil is stored instead.
enum CrashIfDeallocating {
    DontCrashIfDeallocating = false, DoCrashIfDeallocating = true
};
template <HaveOld haveOld, HaveNew haveNew,
          enum CrashIfDeallocating crashIfDeallocating>
static id 
storeWeak(id *location, objc_object *newObj)
{
    ASSERT(haveOld  ||  haveNew);
    if (!haveNew) ASSERT(newObj == nil);

    Class previouslyInitializedClass = nil;
    id oldObj;
    SideTable *oldTable;
    SideTable *newTable;

    // Acquire locks for old and new values.
    // Order by lock address to prevent lock ordering problems. 
    // Retry if the old value changes underneath us.
 retry:
    if (haveOld) {
        oldObj = *location;
        oldTable = &SideTables()[oldObj];
    } else {
        oldTable = nil;
    }
    if (haveNew) {
        newTable = &SideTables()[newObj];
    } else {
        newTable = nil;
    }

    SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);

    if (haveOld  &&  *location != oldObj) {
        SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
        goto retry;
    }

    // Prevent a deadlock between the weak reference machinery
    // and the +initialize machinery by ensuring that no 
    // weakly-referenced object has an un-+initialized isa.
    if (haveNew  &&  newObj) {
        Class cls = newObj->getIsa();
        if (cls != previouslyInitializedClass  &&  
            !((objc_class *)cls)->isInitialized()) 
        {
            SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
            class_initialize(cls, (id)newObj);

            // If this class is finished with +initialize then we're good.
            // If this class is still running +initialize on this thread 
            // (i.e. +initialize called storeWeak on an instance of itself)
            // then we may proceed but it will appear initializing and 
            // not yet initialized to the check above.
            // Instead set previouslyInitializedClass to recognize it on retry.
            previouslyInitializedClass = cls;

            goto retry;
        }
    }

    // Clean up old value, if any.
    if (haveOld) {
        weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
    }

    // Assign new value, if any.
    if (haveNew) {
        newObj = (objc_object *)
            weak_register_no_lock(&newTable->weak_table, (id)newObj, location, 
                                  crashIfDeallocating ? CrashIfDeallocating : ReturnNilIfDeallocating);
        // weak_register_no_lock returns nil if weak store should be rejected

        // Set is-weakly-referenced bit in refcount table.
        if (!newObj->isTaggedPointerOrNil()) {
            newObj->setWeaklyReferenced_nolock();
        }

        // Do not set *location anywhere else. That would introduce a race.
        *location = (id)newObj;
    }
    else {
        // No new value. The storage is not changed.
    }

    SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);

    // This must be called without the locks held, as it can invoke
    // arbitrary code. In particular, even if _setWeaklyReferenced
    // is not implemented, resolveInstanceMethod: may be, and may
    // call back into the weak reference machinery.
    callSetWeaklyReferenced((id)newObj);

    return (id)newObj;
}

storeWeak 函数模板中的HaveOldHaveNew具体实现如下:

enum HaveOld { DontHaveOld = false, DoHaveOld = true };
enum HaveNew { DontHaveNew = false, DoHaveNew = true };

根据以上enum内容,实际传入的storeWeak模板的内容是:
storeWeak<false, true, true> (location, (objc_object*)newObj);
这样的传值,也和objc_initWeak的注释匹配:Initialize a fresh weak pointer to some object location.

实际行为是,根据对象的地址,查找SideTable,存放到newTable指针。

static objc::ExplicitInit<StripedMap<SideTable>> SideTablesMap;

static StripedMap<SideTable>& SideTables() {
    return SideTablesMap.get();
}

StripedMap<SideTable>就是一张保存SideTable的Map,ExplicitInit是底层C/C++相关的初始化行为,这里不展开。StripedMap是一个泛型的Map,可以在objc-private.h中看到相关接口,这里也不进行展开。
SideTable结构如下:

struct SideTable {
    spinlock_t slock;
    RefcountMap refcnts;
    weak_table_t weak_table;

    SideTable() {
        memset(&weak_table, 0, sizeof(weak_table));
    }

    ~SideTable() {
        _objc_fatal("Do not delete SideTable.");
    }

    void lock() { slock.lock(); }
    void unlock() { slock.unlock(); }
    void forceReset() { slock.forceReset(); }

    // Address-ordered lock discipline for a pair of side tables.

    template<HaveOld, HaveNew>
    static void lockTwo(SideTable *lock1, SideTable *lock2);
    template<HaveOld, HaveNew>
    static void unlockTwo(SideTable *lock1, SideTable *lock2);
};

refcnts是用来管理引用计数的表,RefcountMap类型如下:

// RefcountMap disguises its pointers because we 
// don't want the table to act as a root for `leaks`.
typedef objc::DenseMap<DisguisedPtr<objc_object>,size_t,RefcountMapValuePurgeable> RefcountMap;

weak_table则是真正用来管理弱引用的表,weak_table_t结构如下:

/**
 * The global weak references table. Stores object ids as keys,
 * and weak_entry_t structs as their values.
 */
struct weak_table_t {
    weak_entry_t *weak_entries;
    size_t    num_entries;
    uintptr_t mask;
    uintptr_t max_hash_displacement;
};

weak_table_t结构中,最关键的字段是weak_entry_t *weak_entries,这里就是最终记录弱引用信息的数据结构,这是一个动态数组。weak_entry_t结构如下:

/**
 * The internal structure stored in the weak references table. 
 * It maintains and stores
 * a hash set of weak references pointing to an object.
 * If out_of_line_ness != REFERRERS_OUT_OF_LINE then the set
 * is instead a small inline array.
 */
#define WEAK_INLINE_COUNT 4

// out_of_line_ness field overlaps with the low two bits of inline_referrers[1].
// inline_referrers[1] is a DisguisedPtr of a pointer-aligned address.
// The low two bits of a pointer-aligned DisguisedPtr will always be 0b00
// (disguised nil or 0x80..00) or 0b11 (any other address).
// Therefore out_of_line_ness == 0b10 is used to mark the out-of-line state.
#define REFERRERS_OUT_OF_LINE 2

struct weak_entry_t {
    DisguisedPtr<objc_object> referent;
    union {
        struct {
            weak_referrer_t *referrers;
            uintptr_t        out_of_line_ness : 2;
            uintptr_t        num_refs : PTR_MINUS_2;
            uintptr_t        mask;
            uintptr_t        max_hash_displacement;
        };
        struct {
            // out_of_line_ness field is low bits of inline_referrers[1]
            weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
        };
    };

    bool out_of_line() {
        return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
    }

    weak_entry_t& operator=(const weak_entry_t& other) {
        memcpy(this, &other, sizeof(other));
        return *this;
    }

    weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
        : referent(newReferent)
    {
        inline_referrers[0] = newReferrer;
        for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
            inline_referrers[i] = nil;
        }
    }
};

整个弱引用管理过程最核心也是最优代表性的函数是weak_register_no_lock,通过这个函数可以了解到weak管理的过程。
看这个函数可以先不用管旁枝细节,专注到最后return之前的if-else分支部分,深入几个关键函数,即可建立起weak管理的主干脉络认知:即查找weak_entry并试图加入weak引用信息。
在文件runtime/objc-weak.mm中,可以看到weak_register_no_lock函数如下:

/** 
 * Registers a new (object, weak pointer) pair. Creates a new weak
 * object entry if it does not exist.
 * 
 * @param weak_table The global weak table.
 * @param referent The object pointed to by the weak reference.
 * @param referrer The weak pointer address.
 */
id 
weak_register_no_lock(weak_table_t *weak_table, id referent_id, 
                      id *referrer_id, WeakRegisterDeallocatingOptions deallocatingOptions)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;

    if (referent->isTaggedPointerOrNil()) return referent_id;

    // ensure that the referenced object is viable
    if (deallocatingOptions == ReturnNilIfDeallocating ||
        deallocatingOptions == CrashIfDeallocating) {
        bool deallocating;
        if (!referent->ISA()->hasCustomRR()) {
            deallocating = referent->rootIsDeallocating();
        }
        else {
            // Use lookUpImpOrForward so we can avoid the assert in
            // class_getInstanceMethod, since we intentionally make this
            // callout with the lock held.
            auto allowsWeakReference = (BOOL(*)(objc_object *, SEL))
            lookUpImpOrForwardTryCache((id)referent, @selector(allowsWeakReference),
                                       referent->getIsa());
            if ((IMP)allowsWeakReference == _objc_msgForward) {
                return nil;
            }
            deallocating =
            ! (*allowsWeakReference)(referent, @selector(allowsWeakReference));
        }

        if (deallocating) {
            if (deallocatingOptions == CrashIfDeallocating) {
                _objc_fatal("Cannot form weak reference to instance (%p) of "
                            "class %s. It is possible that this object was "
                            "over-released, or is in the process of deallocation.",
                            (void*)referent, object_getClassName((id)referent));
            } else {
                return nil;
            }
        }
    }

    // now remember it and where it is being stored
    weak_entry_t *entry;
    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        append_referrer(entry, referrer);
    } 
    else {
        weak_entry_t new_entry(referent, referrer);
        weak_grow_maybe(weak_table);
        weak_entry_insert(weak_table, &new_entry);
    }

    // Do not set *referrer. objc_storeWeak() requires that the 
    // value not change.

    return referent_id;
}

weak_entry_for_referent函数是查找对象的weak_entry_t:

/** 
 * Return the weak reference table entry for the given referent. 
 * If there is no entry for referent, return NULL. 
 * Performs a lookup.
 *
 * @param weak_table 
 * @param referent The object. Must not be nil.
 * 
 * @return The table of weak referrers to this object. 
 */
static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
    ASSERT(referent);

    weak_entry_t *weak_entries = weak_table->weak_entries;

    if (!weak_entries) return nil;

    size_t begin = hash_pointer(referent) & weak_table->mask;
    size_t index = begin;
    size_t hash_displacement = 0;
    while (weak_table->weak_entries[index].referent != referent) {
        index = (index+1) & weak_table->mask;
        if (index == begin) bad_weak_table(weak_table->weak_entries);
        hash_displacement++;
        if (hash_displacement > weak_table->max_hash_displacement) {
            return nil;
        }
    }

    return &weak_table->weak_entries[index];
}

append_referrer函数即增加weak指针到查找到的weak_entry_t中,其中可以看到
entry->inline_referrers[i] = new_referrer;,即weak指针是直接保存在entry的inline_referrers数组中的。
并且,有当弱引用数大于entry表空间3/4时,有grow_and_insert的过程,即动态数组扩容。

/** 
 * Add the given referrer to set of weak pointers in this entry.
 * Does not perform duplicate checking (b/c weak pointers are never
 * added to a set twice). 
 *
 * @param entry The entry holding the set of weak pointers. 
 * @param new_referrer The new weak pointer to be added.
 */
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
{
    if (! entry->out_of_line()) {
        // Try to insert inline.
        for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
            if (entry->inline_referrers[i] == nil) {
                entry->inline_referrers[i] = new_referrer;
                return;
            }
        }

        // Couldn't insert inline. Allocate out of line.
        weak_referrer_t *new_referrers = (weak_referrer_t *)
            calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
        // This constructed table is invalid, but grow_refs_and_insert
        // will fix it and rehash it.
        for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
            new_referrers[i] = entry->inline_referrers[i];
        }
        entry->referrers = new_referrers;
        entry->num_refs = WEAK_INLINE_COUNT;
        entry->out_of_line_ness = REFERRERS_OUT_OF_LINE;
        entry->mask = WEAK_INLINE_COUNT-1;
        entry->max_hash_displacement = 0;
    }

    ASSERT(entry->out_of_line());

    if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
        return grow_refs_and_insert(entry, new_referrer);
    }
    size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
    size_t index = begin;
    size_t hash_displacement = 0;
    while (entry->referrers[index] != nil) {
        hash_displacement++;
        index = (index+1) & entry->mask;
        if (index == begin) bad_weak_table(entry);
    }
    if (hash_displacement > entry->max_hash_displacement) {
        entry->max_hash_displacement = hash_displacement;
    }
    weak_referrer_t &ref = entry->referrers[index];
    ref = new_referrer;
    entry->num_refs++;
}

总结

保存weak引用信息的数据结构

  1. StripedMap<SideTable>作为弱引用管理的第一层数据结构,以对象的地址为key,value是SideTable结构体
  2. SideTable结构体中的weak_table_t weak_table字段,记录弱引用信息。
  3. weak_table_t结构中的weak_entry_t *weak_entries字段,是一个动态数组,是最终记录一个oc对象的weak指针的地点。

过程

  • 通过oc object地址,找到这个对象的SideTable
  • 顺着数据结构的层次,找到weak_entry_t
  • 将weak指针保存在weak_entries动态数组中。当数组容量超过3/4时,会进行扩容。保存weak指针地址到entry的inline_referrers数组中,即entry->inline_referrers[i] = new_referrer;

可以展开的过程

  • weak指针没有指向任何对象,首次指向一个oc object的情形,即本文简要说明的这个过程。
  • weak指针已经指向一个oc object,然后再指向另一个oc object的情形
  • weak指针置为nil的情形

上述过程都可以通过走读代码理清楚,关键就是对保存weak引用信息的数据结构进行操作,期间对特定的场景需要处理竞态,所以有加锁操作。这里不再一一展开。


发表回复

您的电子邮箱地址不会被公开。

我不是机器人*